Processing math: 18%

Tuesday, November 19, 2013

Linear Algebra

Problem 1

Prove that if TL(V) is normal, then
nullTk=nullT and rangeTk=rangeT

Solution:
easy to check that nullTnullTk
to prove an inclusion in the other direction, suppose that vnullTk
Tkv=T(Tk1v)=0Tk1vnullT and Tk1vrangeTk1rangeT
but V=nullT(nullT)=nullTrangeT=nullTrangeT
the third equality holds because T is normal
Tk1vnullTrangeTTk1v=0, inductively, we have Tv=0
This shows that nullTknullT, completing the proof that nullT=nullTk

Now we are going to show that rangeTk=rangeT
rangeT=rangeT=(nullT)=(nullTk)=range(Tk)=rangeTk
first equality holds because T is normal, third equality is come from the previous proof, the last equality holds because Tk is normal

Thursday, November 7, 2013

Lebesgue Measure

Problem 1

Let An be any sequence of subsets of R
(i) if AnA then λ(An)λ(A)
(ii)λ(lim inf, where \liminf A_n=\{x:x\in A_n \mbox{ultimately}\}

solution:
(i)
Let  F_n=\bigcup_{i=1}^{n}E_i, F=\cup E_n,A=\cup A_n, where E_n is measurable such that A_n\subset E_n, and E_n-A_n is negligible (it is easy to prove such E_n exists), clearly A\subset F,
F_n\uparrow F, therefore \lambda^*(F_n)\uparrow \lambda^*(F)
\begin{align} \lambda^*(A_n)\leq\lambda^*(F_n)&\leq\lambda^*(A_n)+\lambda^*(F_n-A_n)\\ &\leq\lambda^*(A_n)+\sum_{i=1}^{n}\lambda^*(E_i-A_i)\\ &= \lambda^*(A_n) \end{align}
\lambda^*(F_n)=\lambda^*(A_n)\leq \lambda^*(A)\leq \lambda^*(F), and since F_n\uparrow F, we have \lambda^*(A_n)\uparrow \lambda^*(A)
(ii)
Let B_n=\bigcap_{k\geq n}A_k, then B_n\uparrow B=\liminf A_n
\lambda^*(B_n)\leq \lambda^*(A_n)\Rightarrow \liminf\limits_{n\to\infty} \lambda^*(B_n)=\lambda^*(\liminf A_n)\leq \liminf\limits_{n\to\infty} \lambda^*(A_n)
The equality follows from (i)

Problem 2

For A\subset [a,b]\subset \mathbb{R}, \lambda^*(A) is also called the exterior measure of A in [a,b] and is denoted \lambda_e(A), the interior measure of A in [a,b], denoted \lambda_i(A), is defined by the formula
\lambda_i(A)=(b-a)-\lambda_e([a,b]-A)in general, \lambda_i(A)\leq\lambda_e(A) ; the set A is measurable if and only if \lambda_i(A)=\lambda_e(A)

solution:
\Rightarrow is easy
\Leftarrow We use \lambda^* instead of \lambda_e denote I=[a,b], let J be any bounded interval \begin{align*} \lambda^*(I)&=\lambda^*(I\cap A)+\lambda^*(I\cap A')\\ &=\lambda^*(I\cap A\cap J)+\lambda^*(I\cap A\cap J')+\lambda^*(I\cap A'\cap J)+\lambda^*(I\cap A'\cap J') \\ &=\lambda^*(I\cap A\cap J)+\lambda^*(I\cap A'\cap J)+\lambda^*(I\cap A\cap J')+\lambda^*(I\cap A'\cap J')\\ &\geq \lambda^*(I\cap J)+\lambda^*(I\cap J')\\ &=\lambda^*(I) \end{align*}
Therefore we have \lambda^*(I\cap A\cap J)+\lambda^*(I\cap A'\cap J)=\lambda^*(I\cap J), and it is easy to see that \lambda^*(A\cap J)+\lambda^*(A'\cap J)=\lambda^*(J) Suppose S is a subset of \mathbb{R} for every \varepsilon>0, there exists U,S\subset U=\bigcup J_n and \sum \lambda^*(J_n)<\lambda^*(S)+\varepsilon
\begin{align*} \lambda^*(A\cap S)+\lambda^*(A'\cap S)&\leq\lambda^*(A\cap U)+\lambda^*(A'\cap U)\\ &\leq \sum\lambda^*(A\cap J_n)+\sum\lambda^*(A'\cap J_n)\\ &=\sum(\lambda^*(A\cap J_n)+\lambda^*(A'\cap J_n))\\ &=\sum\lambda^*(J_n)\\ &<\lambda^*(S)+\varepsilon \end{align*}
Since \varepsilon is arbitrary, we can conclude that A is measurable 

Problem 3

If A is a Lebesgue-measurable subset of \mathbb{R} such that \lambda(A)>0, then the difference set D=\{a-b:a,c\in A\} is a neighborhood of 0, that is, (-\delta,\delta)\subset D for some \delta>0.

Tuesday, October 15, 2013

Sequences of Functions

Problem 1
Let \{g_n\} be a sequence of real valued functions such that g_{n+1}(x)\leq g_n(x) for each x in T and for every n=1,2,.... If \{g_n\} is uniformly bounded on T and if \sum f_n(x) converges uniformly on T, then \sum f_n(x)g_n(x) also converges uniformly on T.

Problem 2
Let {a_n} be a decreasing sequence of positive terms. Prove that the series \sum a_n \sin nx converges uniformly on \mathbb{R} if, and only if, na_n\to 0 as n\to\infty

Only if direction is easy so we omit the proof here, we only prove the if direction
Suppose na_n\to 0 as n\to\infty, let B_n(x)=\sum\limits_{k=1}^{n}\sin kx \sum\limits_{k=1}^{n}a_k \sin kx=B_n a_{n+1}-\sum\limits_{k=1}^{n}B_k (a_{k+1}-a_k) \begin{align*} \bigg|\sum\limits_{k=n+1}^{m}a_k \sin kx\bigg|&=\bigg| B_n a_{n+1}-B_m a_{m+1}+\sum\limits_{k=n+1}^{m}B_k (a_{k+1}-a_k)\bigg|\\ &=\bigg| B_n a_{n+1}-B_m a_{m+1}+ B(a_{m+1}-a_{n+1}) \bigg|,\;\;\ \\ &\mbox{where}\;min\{B_{n+1},B_{n+2},...,B_{m}\}\leq B \leq max\{B_{n+1},B_{n+2},...,B_{m}\}\\ &\leq \bigg|(B_n-B) a_{n+1} \bigg|+ \bigg|(B-B_m) a_{m+1} \bigg|\\ &<2Na_{n+1}+2Ma_{m+1}\\ &<\varepsilon \end{align*}

problem 1 can be proved in a similar way

Problem 3
Given a power series \sum_{n=0}^{\infty} a_n z^n whose coefficients are related by an equation of the form a_n+Aa_{n-1}+Ba_{n-2}=0 (n=2,3,...)
Show that for any x for which ther series converges, its sum is \frac{a_0+(a_1+Aa_0)x}{1+Ax+Bx^2}

Problem 4
Show that the binomial series (1+x)^{\alpha}=\sum_{n=0}^{\infty} {\alpha \choose k} x^n exhibits the following behavior at the points x=\pm 1
a) If x=-1, the series converges for \alpha\geq 0 and diverges for \alpha<0
b) If x=1, the series diverges for \alpha \leq -1, converges conditionally for \alpha in the inteval -1<\alpha<0, and converges absolutely for \alpha\geq0